111 research outputs found

    Complex oscillations with multiple timescales - Application to neuronal dynamics

    Get PDF
    The results gathered in this thesis deal with multiple time scale dynamical systems near non-hyperbolic points, giving rise to canard-type solutions, in systems of dimension 2, 3 and 4. Bifurcation theory and numerical continuation methods adapted for such systems are used to analyse canard cycles as well as canard-induced complex oscillations in three-dimensional systems. Two families of such complex oscillations are considered: mixed-mode oscillations (MMOs) in systems with two slow variables, and bursting oscillations in systems with two fast variables. In the last chapter, we present recent results on systems with two slow and two fast variables, where both MMO-type dynamics and bursting-type dynamics can arise and where complex oscillations are also organised by canard solutions. The main application area that we consider here is that of neuroscience, more precisely low-dimensional point models of neurons displaying both sub-threshold and spiking behaviour. We focus on analysing how canard objects allow to control the oscillatory patterns observed in these neuron models, in particular the crossings of excitability thresholds

    Synchronization in STDP-driven memristive neural networks with time-varying topology

    Full text link
    Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the specific parameter configurations of the synaptic network structure and learning rules needed to achieve robust and enduring synchronization in neurons driven by spike-timing-dependent plasticity (STDP) and temporal networks subject to homeostatic structural plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the configurations required to achieve high and stable degrees of complete synchronization (CS) and phase synchronization (PS) in time-varying small-world and random neural networks driven by STDP and HSP. In particular, we found that decreasing PP (which enhances the strengthening effect of STDP on the average synaptic weight) and increasing FF (which speeds up the swapping rate of synapses between neurons) always lead to higher and more stable degrees of CS and PS in small-world and random networks, provided that the network parameters such as the synaptic time delay τc\tau_c, the average degree ⟨k⟩\langle k \rangle, and the rewiring probability β\beta have some appropriate values. When τc\tau_c, ⟨k⟩\langle k \rangle, and β\beta are not fixed at these appropriate values, the degree and stability of CS and PS may increase or decrease when FF increases, depending on the network topology. It is also found that the time delay τc\tau_c can induce intermittent CS and PS whose occurrence is independent FF. Our results could have applications in designing neuromorphic circuits for optimal information processing and transmission via synchronization phenomena.Comment: 28 pages, 86 references, 8 figures, 2 Table

    Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system

    Get PDF
    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for nonzero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary condition. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial-dynamical system

    Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster

    Full text link
    The well-studied Hindmarsh-Rose model of neural action potential is revisited from the point of view of global bifurcation analysis. This slow-fast system of three paremeterised differential equations is arguably the simplest reduction of Hodgkin-Huxley models capable of exhibiting all qualitatively important distinct kinds of spiking and bursting behaviour. First, keeping the singular perturbation parameter fixed, a comprehensive two-parameter bifurcation diagram is computed by brute force. Of particular concern is the parameter regime where lobe-shaped regions of irregular bursting undergo a transition to stripe-shaped regions of periodic bursting. The boundary of each stripe represents a fold bifurcation that causes a smooth spike-adding transition where the number of spikes in each burst is increased by one. Next, numerical continuation studies reveal that the global structure is organised by various curves of homoclinic bifurcations. In particular the lobe to stripe transition is organised by a sequence of codimension-two orbit- and inclination-flip points that occur along {\em each} homoclinic branch. Each branch undergoes a sharp turning point and hence approximately has a double-cover of the same curve in parameter space. The sharp turn is explained in terms of the interaction between a two-dimensional unstable manifold and a one-dimensional slow manifold in the singular limit. Finally, a new local analysis is undertaken using approximate Poincar\'{e} maps to show that the turning point on each homoclinic branch in turn induces an inclination flip that gives birth to the fold curve that organises the spike-adding transition. Implications of this mechanism for explaining spike-adding behaviour in other excitable systems are discussed.Comment: 32 pages, 18 figures, submitted to SIAM Journal on Applied Dynamical System

    Spike-adding in a canonical three time scale model: superslow explosion & folded-saddle canards

    Get PDF
    International audienceWe examine the origin of complex bursting oscillations in a phenomenological ordinary differential equation model with three time scales. We show that bursting solutions in this model arise from a Hopf bifurcation followed by a sequence of spike-adding transitions, in a manner reminiscent of spike- adding transitions previously observed in systems with two time scales. However, the details of the process can be much more complex in this three-time-scale context than in two-time-scale systems. In particular, we find that spike-adding can involve canard explosions occurring on two different time scales and is associated with passage near a folded-saddle singularity. We show that the character of the bursting and the form of spike-adding transitions that occur depend on the geometry of certain singular limit systems, specifically the relative positions of the critical and superslow manifolds. We also show that, unlike the case of spike-adding in two-time-scale systems, the onset of a new spike in our model is not typically associated with a local maximum in the period of the bursting oscillation
    • …
    corecore